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•The hydrogen economy plays a crucial role in decarbonizing sectors that 

are hard to electrify—like heavy industry, shipping, and aviation.

•Hydrogen is clean at the point of use, producing only water when used 

as a fuel.

•To meet global net-zero targets by 2050, we must shift from fossil-

derived ("grey") hydrogen to green hydrogen made using renewable-

powered electrolysis.

•Water electrolysis is a key technology for producing green hydrogen:

• Splits water into hydrogen and oxygen using electricity

• When powered by renewables (e.g., solar, wind), it is zero-emission

•Scaling up green hydrogen via electrolysis is essential to cut CO₂ 
emissions, stabilize energy systems, and enable climate-resilient 

economies (Energy Harvesting and Systems, 11(1) 20220134, 2024, 1-

28)

Figure 1. The complete green hydrogen value chain — from renewable inputs 

to final green products (Ref: Towards a green hydrogen roadmap for the UK – 

summary report, Royal Soceity, Sept. 2024).

Oxygen evolution reaction (OER)

Anode: H2O → 1/2O2 + 2H+ + 2e-

In water electrolysis, the anode drives the Oxygen Evolution Reaction 

(OER) — a slow, energy-intensive step that limits overall efficiency.

Improving anode performance is key to

(a) Lowering energy consumption, (b) Boosting hydrogen yield and (c) 

Enhancing long-term system durability

Hydrogen evolution reaction (HER):

Cathode: 2H+ + 2e- → H2 

Why the Anode Matters in Electrolysis?

Electrolysis Water Splitting Oxygen and Hydrogen Generation

Ruthenium Oxide (RuO2) Water Oxidation Catalysts

Figure 2.  The electrolysis water splitting cells.  

• High OER activity under acidic 

conditions

• Excellent electrical conductivity

• Good chemical stability in harsh 

electrolytic environments

• Well-suited for Proton Exchange 

Membrane (PEM) electrolysers

Figure 3. OER volcano plot.

(Ref: J. Electroanal. Chem. Interfacial Electrochem. 111, 1980, 125–131)
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•Develop and evaluate RuO₂ and RuO₂–graphene composite catalysts for 

acidic water electrolysis – solvothermal technique.

•Enhance catalytic activity while reducing the use of expensive RuO₂.
•Investigate the role of graphene in improving conductivity and lowering overall 

material cost.

•Benchmark electrochemical performance, durability, and cost-effectiveness for 

scalable hydrogen production.
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•Reducing Ru content using conductive additives like graphene

•Nanostructuring to increase active surface area

•Composite design for improved durability and cost-efficiency

Research Focus 

Figure 4. (a) Schematic of RuO₂ nanoparticles and RuO₂/graphene 

composite synthesis using a solvothermal method.

(b) Fabrication of RuO₂ and RuO₂/graphene composite electrodes via spray 

coating onto carbon paper.

Surface Morphology Analysis 

Figure 5. SEM images at 1 µm scale: (a, b) RuO₂-coated carbon paper and its 

elemental mapping (C, Ru, O); (c, d) RuO₂/graphene (50:50 wt%) composite 

coating and corresponding elemental mapping confirming C, Ru, and O 

distribution.

Figure 6. SEM images at 200 µm scale: (a,) carbon paper, b) RuO₂-coated 

carbon paper, and (c) RuO₂/graphene composite coated carbon paper.

•Uniform distribution of RuO₂ nanoparticles along carbon fibers.

•Good surface coverage and adhesion observed.

•RuO₂ nanoparticles: spherical, ~100–150 nm in size.

•Graphene sheets: larger, micron-scale lateral dimensions.

•Clear nanoscale integration of RuO₂ within graphene matrix.

•Graphene content leads to a more interconnected and rougher coating 

structure.

RuO₂ nanoparticles: spherical, ~100–150 nm in size.

•Graphene sheets: lager, micron-scale lateral dimensions.

•Clear nanoscale integration of RuO₂ within graphene matrix.

• The Tafel slope is the number of mVs required to increase the current by 

a factor of 10 (mV/dec). Low Tafel slopes are desired as it’s an indication 

of an active catalyst, as a small overpotential is needed to reach high 

current densities (Nano Convergence, 8(1), 2021, 1-23)

• From Figure 9, it shows that RuO2-Graphene composites have faster 

electrocatalytic reaction kinetics when comparing pure RuO2 

nanoparticle. Also, the slope values of the RuO2/Graphene composite is 

lower than 24 mV/dec the other reports in the literature (RuO2: 54 mV/dec 

& RuO2/Graphene: 30 mV/dec) (Journal of Materials Chemistry A, 

9(28), 2021, 15506-15521)

The Tafel slope is a key electrochemical parameter used to assess the 

kinetics of electrochemical reactions, especially the OER & HER in water 

splitting. It is derived from the Tafel equation: η=a+b.log (j) 

η = overpotential (V); j = current density (mA/cm²); b = Tafel slope 

(mV/dec); a = intercept (related to exchange current density) (Nano 

Convergence, 8(1), 2021, 1-23)

Figure 9. (a) Tafel plots of RuO2 and (b) RuO2/Graphene composite.
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Tafel plots

Charge transfer resistance (Nyquist Plots)

Figure 8. Nyquist plots of (a) RuO₂ and (b) RuO₂/graphene composite 

electrodes, measured in 0.5 M aqueous H₂SO₄ at open-circuit potential 

(OCP).

(a)

(b)

Electrochemical performance 

Figure 7 (a) shows the LSV profiles of RuO₂, G(5%)-RuO₂, and G(15%)-RuO₂ 

anodes before a 1-hour stability test, where G(15%)-RuO₂ exhibits the highest 

current density and the lowest onset potential, indicating superior 

electrocatalytic activity for OER. In contrast, pristine RuO₂ shows the lowest 

performance. After the 1-hour stability test (Figure 7b), both G(5%)- and G(15%)-

RuO₂ retain their activity with minimal loss, while RuO₂ demonstrates significant 

degradation. These results confirm that graphene incorporation not only 

enhances the OER activity but also significantly improves the electrochemical 

durability of RuO₂ in acidic media.

Figure 7. (a) and (b) show the linear sweep voltammetry (LSV) curves of RuO₂, 
G(5%)-RuO₂, and G(15%)-RuO₂ anodes recorded in 0.5 M H₂SO₄ before and 

after a 1-hour stability test, respectively.

Figure 8. Comparative LSV analysis of direct and indirect synthesis of RuO2 

and Graphene-RuO2 composite

The comparison highlights (Fig.8) the influence 

of synthesis route on the electrocatalytic 

performance toward the oxygen evolution 

reaction (OER) in 0.5 M H₂SO₄. The G(5%)-

RuO₂ prepared by direct synthesis exhibits 

higher current density and lower onset 

potential, indicating improved activity 

compared to both the physically mixed 

counterpart and pristine RuO₂.

• The Nyquist plots presented show the electrochemical impedance spectra of 

pristine RuO₂, RuO₂ G5, and RuO₂ G15 in 0.5 M H₂SO₄. The semicircle 

diameter in the high-frequency region corresponds to the charge transfer 

resistance (Rct), which is an indicator of the ease with which electrons are 

transferred at the electrode/electrolyte interface.

• Among the three, RuO₂ - G15 (blue triangles) exhibits the smallest 

semicircle, indicating the lowest charge transfer resistance and thus the 

fastest electron transfer kinetics. RuO₂ G5 (red circles) shows an 

intermediate Rct, while pristine RuO₂ (black squares) has the largest 

semicircle, corresponding to the highest resistance and poorest conductivity.

• RuO₂ and RuO₂–graphene composites were successfully synthesized 

via a solvothermal method, producing nanoparticles sized between 100–

150 nm. Their electrochemical performance was evaluated as anodes for 

water splitting, focusing on the oxygen evolution reaction (OER) in acidic 

media. 

• Graphene incorporation significantly improved the electrocatalytic activity 

of RuO₂. G(15%)-RuO₂ showed the highest current density and lowest 

onset potential before stability testing, indicating excellent initial 

performance. After a 1-hour stability test, both G(5%)- and G(15%)-RuO₂ 
retained their activity with minimal loss, while pure RuO₂ showed notable 

degradation. 

• The composite synthesized via direct solvothermal route outperformed 

the physically mixed version, underscoring the importance of synthesis 

approach. Nyquist plots confirmed lower charge transfer resistance for 

G(15%)-RuO₂, indicating better conductivity and faster electron transfer. 

Tafel slope analysis also showed improved reaction kinetics and lower 

overpotentials for the composites. 

• Overall, graphene integration enhances performance, reduces Ru 

usage, and supports the development of cost-effective, durable catalysts 

for green hydrogen production in acidic electrolyzers.

• High cost — Ruthenium is a rare and expensive platinum group metals 

(PGM)

• Ru dissolution under high anodic potentials

• Limited scalability due to cost and stability issues

• Material degradation affects long-term durability and performance
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