Enhancing Water Oxidation with RuO₂–Graphene Composites for **Economical Green Hydrogen Generation**

Michal Ciesielka, Michael Walsh, Sudhagar Pitchaimuthu*

Research Centre for Carbon Solutions (RCCS), Institute of Mechanical, Processing and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, UK.

E-Mails: mac4001@hw.ac.uk , * S.Pitchaimuthu@hw.ac.uk

Introduction

•The **hydrogen economy** plays a crucial role in decarbonizing sectors that are hard to electrify—like heavy industry, shipping, and aviation. •Hydrogen is clean at the point of use, producing only water when used as a fuel.

•To meet global net-zero targets by 2050, we must shift from fossilderived ("grey") hydrogen to green hydrogen made using renewablepowered electrolysis.

•Water electrolysis is a key technology for producing green hydrogen:

• Splits water into hydrogen and oxygen using electricity

• When powered by renewables (e.g., solar, wind), it is **zero-emission** •Scaling up green hydrogen via electrolysis is essential to cut CO₂ emissions, stabilize energy systems, and enable climate-resilient economies (Energy Harvesting and Systems, 11(1) 20220134, 2024, 1-28)

Methodology (a) <u>RuO₂ and RuO₂ /Graphene Composite Synthesis</u> JM Johnso Matthe Graphene sheets BT Graph® Autoclave jar at Furnace a Ru precursor salt + Solvent and filtering proces 180° c for 24 hrs (b) Nanoscale Electrode (anode) 100-150 nm

Results and Discussion - Continued

Tafel plots

Figure 1. The complete green hydrogen value chain — from renewable inputs to final green products (Ref: Towards a green hydrogen roadmap for the UK – summary report, Royal Soceity, Sept. 2024).

Background

Electrolysis Water Splitting Oxygen and Hydrogen Generation

Figure 2. The electrolysis water splitting cells.

Why the Anode Matters in Electrolysis?

Figure 4. (a) Schematic of RuO_2 nanoparticles and RuO_2 /graphene composite synthesis solvothermal method. using а (b) Fabrication of RuO₂ and RuO₂/graphene composite electrodes via spray coating onto carbon paper.

Results and Discussion

Surface Morphology Analysis

Figure 5. SEM images at 1 μ m scale: (a, b) RuO₂-coated carbon paper and its elemental mapping (C, Ru, O); (c, d) RuO₂/graphene (50:50 wt%) composite coating and corresponding elemental mapping confirming C, Ru, and O distribution.

Figure 9. (a) Tafel plots of RuO₂ and (b) RuO₂/Graphene composite.

The Tafel slope is a key electrochemical parameter used to assess the kinetics of electrochemical reactions, especially the OER & HER in water splitting. It is derived from the Tafel equation: **η=a+b.log (j)**

 η = overpotential (V); **j** = current density (mA/cm²); **b** = Tafel slope (mV/dec); **a** = intercept (related to exchange current density) (Nano Convergence, 8(1), 2021, 1-23)

- The Tafel slope is the number of mVs required to increase the current by a factor of 10 (mV/dec). Low Tafel slopes are desired as it's an indication of an active catalyst, as a small overpotential is needed to reach high current densities (Nano Convergence, 8(1), 2021, 1-23)
- From Figure 9, it shows that RuO₂-Graphene composites have faster electrocatalytic reaction kinetics when comparing pure RuO_2 nanoparticle. Also, the slope values of the RuO₂/Graphene composite is lower than 24 mV/dec the other reports in the literature (RuO₂: 54 mV/dec & RuO2/Graphene: 30 mV/dec) (Journal of Materials Chemistry A, 9(28), 2021, 15506-15521)

Charge transfer resistance (Nyquist Plots)

Oxygen evolution reaction (OER) Anode: $H_2O \rightarrow 1/2O_2 + 2H^+ + 2e^-$ In water electrolysis, the anode drives the Oxygen Evolution Reaction (OER) — a slow, energy-intensive step that limits overall efficiency. Improving anode performance is key to (a) Lowering energy consumption, (b) Boosting hydrogen yield and (c) Enhancing long-term system durability

Hydrogen evolution reaction (HER): Cathode: $2H^+ + 2e_- \rightarrow H_2$

Ruthenium Oxide (RuO2) Water Oxidation Catalysts

- High OER activity under acidic conditions Excellent electrical conductivity
- Good chemical stability in harsh electrolytic environments
- Well-suited for Proton Exchange Membrane (PEM) electrolysers

Figure 3. OER volcano plot.

(Ref: J. Electroanal. Chem. Interfacial Electrochem. 111, 1980, 125–131)

Challenges – RuO₂ Water Oxidation Catalysts

- High cost Ruthenium is a rare and expensive platinum group metals (PGM)
- Ru dissolution under high anodic potentials
- Limited scalability due to cost and stability issues

Figure 6. SEM images at 200 μ m scale: (a,) carbon paper, b) RuO₂-coated carbon paper, and (c) RuO_2 /graphene composite coated carbon paper.

•Uniform distribution of RuO₂ nanoparticles along carbon fibers. •Good surface coverage and adhesion observed. •RuO₂ nanoparticles: spherical, \sim 100–150 nm in size. •Graphene sheets: larger, micron-scale lateral dimensions. •Clear nanoscale integration of RuO₂ within graphene matrix. •Graphene content leads to a more interconnected and rougher coating structure.

Electrochemical performance

Figure 7. (a) and (b) show the linear sweep voltammetry (LSV) curves of RuO_2 , G(5%)- RuO_2 , and G(15%)- RuO_2 anodes recorded in 0.5 M H_2SO_4 before and after a 1-hour stability test, respectively.

Figure 7 (a) shows the LSV profiles of RuO₂, G(5%)-RuO₂, and G(15%)-RuO₂ anodes before a 1-hour stability test, where G(15%)-RuO₂ exhibits the highest current density and the lowest onset potential, indicating superior electrocatalytic activity for OER. In contrast, pristine RuO₂ shows the lowest performance. After the 1-hour stability test (Figure 7b), both G(5%)- and G(15%)-RuO₂ retain their activity with minimal loss, while RuO₂ demonstrates significant degradation. These results confirm that graphene incorporation not only enhances the OER activity but also significantly improves the electrochemical durability of RuO_2 in acidic media.

Figure 8. Nyquist plots of (a) RuO_2 and (b) RuO_2 /graphene composite electrodes, measured in 0.5 M aqueous H_2SO_4 at open-circuit potential *(OCP).*

- The Nyquist plots presented show the electrochemical impedance spectra of pristine RuO_2 , RuO_2 G5, and RuO_2 G15 in 0.5 M H₂SO₄. The semicircle diameter in the high-frequency region corresponds to the charge transfer resistance (R_{ct}), which is an indicator of the ease with which electrons are transferred at the electrode/electrolyte interface.
- Among the three, RuO_2 G15 (blue triangles) exhibits the smallest semicircle, indicating the lowest charge transfer resistance and thus the fastest electron transfer kinetics. RuO₂ G5 (red circles) shows an intermediate R_{ct}, while pristine RuO₂ (black squares) has the largest semicircle, corresponding to the highest resistance and poorest conductivity.

Conclusion

- RuO₂ and RuO₂–graphene composites were successfully synthesized via a solvothermal method, producing nanoparticles sized between 100-150 nm. Their electrochemical performance was evaluated as anodes for water splitting, focusing on the oxygen evolution reaction (OER) in acidic media.
- Graphene incorporation significantly improved the electrocatalytic activity of RuO_2 . G(15%)-RuO₂ showed the highest current density and lowest onset potential before stability testing, indicating excellent initial performance. After a 1-hour stability test, both G(5%)- and G(15%)-RuO₂ retained their activity with minimal loss, while pure RuO₂ showed notable

Material degradation affects long-term durability and performance

Research Focus

•Reducing Ru content using conductive additives like graphene •Nanostructuring to increase active surface area •Composite design for improved durability and cost-efficiency

Nano Energy, 2020, 78, 105185 Catalysis Science & Technology, 2018, 8(19), 4957-4974. ACS Applied Nano Materials, 2020, 3(12), 12269-12277.

Objectives

•Develop and evaluate RuO_2 and RuO_2 -graphene composite catalysts for acidic water electrolysis – solvothermal technique. •Enhance catalytic activity while reducing the use of expensive RuO₂. Investigate the role of graphene in improving conductivity and lowering overall

material cost.

•Benchmark electrochemical performance, durability, and cost-effectiveness for scalable hydrogen production.

Applied Potential (V) vs RHE

1.0

– RuO₂

0.5

30

eut 20 -

Graphene

Figure 8. Comparative LSV analysis of direct and indirect synthesis of RuO₂ and Graphene-RuO₂ composite

degradation.

- The composite synthesized via direct solvothermal route outperformed the physically mixed version, underscoring the importance of synthesis approach. Nyquist plots confirmed lower charge transfer resistance for G(15%)-RuO₂, indicating better conductivity and faster electron transfer. Tafel slope analysis also showed improved reaction kinetics and lower overpotentials for the composites.
- Overall, graphene integration enhances performance, reduces Ru usage, and supports the development of cost-effective, durable catalysts for green hydrogen production in acidic electrolyzers.

Acknowledgements

This research is supported by the EPSRC Centre for Doctoral Training in Green Industrial Futures at Heriot-Watt University. SP gratefully acknowledges Johnson Matthey for funding through the PGM Award Scheme. We thank Andrew Bentley for his valuable contributions to the experiments and technical discussions. SP also acknowledges support from Scottish Enterprise and the EPSRC Impact Acceleration Account (IAA) at Heriot-Watt University.

