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AIMS AND OBJECTIVES
Elucidate the underlying physics during flashback: Global vs Local dynamics

Investigate experimentally hydrogen boundary layer flashback. Develop methods for flashback prediction using physics-
Explore the effect of hydrogen’s unique physico-chemical properties iInformed Machine Learning and Computer Vision models,
on flashback limits and determine the system-governing parameters.

BACKGROUND BOUNDARY LAYER FLASHBACK

The rising electricity demand and global commitments to achieving Net Flashback is the upstream propagation of a flame into regions
Zero GHG emissions are driving an urgent need for decarbonising the . There exist three main types of flashback
power sector. Hydrogen-fuelled gas turbines are now the focus of depending on the mechanism: Bulk Flow, Combustion Instability, and
intensive research, development and investment efforts aimed at Boundary Layer flashback.
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Boundary layer flashback occurs once the flame speed exceeds the bulk flow
velocity near the wall, allowing it to propagate upstream, g < g rit-
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METHODOLOGY

@ Numerical Results - Premixed Counterflow Flames
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9 Early Warning Methods - Permutation Entropy (PE)
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Mﬁ\\%% = Early Warning within any system, by analysing the complexity of a representative
\
% Methods signal (Pressure). It is also suitable for active control applications.

IMPACT OF RESEARCH

Accelerate the UK transition to Net Zero by enabling

sustainable hydrogen-based energy solutions, driving S A
innovation, informing industrial decarbonisation, and upport clean energy transitions. 2 Accelerate H,-to-Power pathways. =

supporting resilient, low-carbon futures. Ensu re safer hydrogen integration into power systems.

Provide operational guidelines for hydrogen gas turbines.

References:
[1] R. Ranjan and N. T. Clemens, ‘Insights into flashback-to-flameholding transition of hydrogen-rich stratified swirl flames’, Proc. Comb. Inst., vol. 38, no. 4, pp. 6289-6297, 2021.

[2] A. Kalantari and V. McDonell, ‘Boundary layer flashback of non-swirling premixed flames: Mechanisms, fundamental research, and recent advances’, Prog. Energy Combust. Sci., vol. 61, pp. 249-292, 2017.

[3] Z. Duan, B. Shaffer, V. McDonell, G. Baumgartner, and T. Sattelmayer, ‘Influence of Burner Material, Tip Temperature, and Geometrical Flame Configuration on Flashback Propensity of H2-Air Jet Flames’, J. Eng.
Gas Turbines Power, vol. 136, no. 2, p. 021502, 2014. Engineering and
[4] T. Sponfeldner, N. Soulopoulos, F. Beyrau, Y. Hardalupas, A. M. K. P. Taylor, and J. C. Vassilicos, ‘The structure of turbulent flames in fractal- and regular-grid-generated turbulence’, Comb. Flame, vol. 162, no. % Physical Sciences

Research Council

9, pp. 3379-3393, 2015.
[5] S. Qui, Transition mechanism to thermoacoustic oscillations in a swirl stabilized gas turbine combustor. London, UK: Imperial College London, 2024.




