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Background & Motivation

The aviation industry contributes ~2% of global CO, emissions [1N
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& Sustainable Aviation Fuels (SAFs) reduce emissions. However,
Cb only <0.1% of jet fuel (Cx—C,¢ ) currently comes from SAFs [1].
¥

et

o Power-to-Liquid (PtL) utilises captured CO,, green hydrogen and
W' clean electricity to produce SAFs.
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f,;{ Catalysts drive the PtL process through Electrochemical CO,
Y @duction Reaction (ECO,RR) [2-7].
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Research Aim

To develop efficient, low-cost electrocatalysts for converting CO, into
chemicals and SAFs through the PtL process.
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Research Gaps

Hydrogen Evolution Reaction
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Fig. 1. Faradaic Efficiencies of monometallic and bimetallic unreported inthe ECO2RR

catalysts for ECO,RR, showing trade-offs between H,, CO, and >C,

literature.
hydrocarbons. Data compiled from [2-7].
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Fig. 2. The PtL process for SAF production.
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Real-World Impacts

Selective catalysts simplify
processing, lowering
production costs for SAFs.
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Enabling Net-Zero
Aviation through SAF
production.

Supports National and
Global Climate Targets.

Takeaway Points

* Producing Jet fuels from CO, begins with the right catalysts.

* The PtL process can decarbonise aviation by utilising CO,and green
hydrogen to produce SAFs.

* Efficient electrocatalysts are crucial for scaling up the process.
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* Future work would focus on developing and testing highly selective
K electrocatalysts for SAF production. /
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